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Abstract

A pre-processing design using neural networks is proposed for multiwavelet filters. Various numerical
experiments are presented and a comparison is given between neural network pre-processing and a pre-
processing for solving linear systems. Neural network pre-processing produces a good approximation for
a large number of terms and converges repidly.
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Résumé

On propose un préprocesseur neuromimétique pour le filtrage des multi-ondelettes. On présente de nom-
breux résultats numériques que l’on compare avec avec des préprocesseurs pour la solution de systèmes
linéaires. Le préprocesseur neuromimétique aproxime bien les grands systèmes et converge rapidement.





1 Introduction

Since wavelets are solutions of multiscale equations, they cannot easily be studied and applied as mathematical
objects without the use of computers. This paper is no exception. Multiwavelets consist in several scaling functions
and wavelets. It is believed that multiwavelets are ideally suited to multichannel signals like color images which are
two-dimensional three-channel signals and stereo audio signals which are one-dimensional two-channel signals. For
instance, for a two-channel signal, which consists of a two-vector sequence of bits, {xk}, the lowpass and highpass
filters are 2× 2 matrix functions corresponding to two scaling functions and two wavelets, respectively. Multiscaling
functions and multiwavelets can simultaneously have orthogonality, linear phase, symmetry and compact support.
This situation cannot occur in the scalar case with real scaling functions and real wavelets.

The simplest scalar wavelet in L2(R) is the Haar system, see Meyer[1], Section 3.2, with the indicator function of
the interval [0, 1] as scaling function. Alpert[2] generalized the Haar system to one-dimensional discontinuous mul-
tiwavelets with vanishing moments in L2(R). Using fractal interpolation, Geronimo, Hardin, and Massopust[3] con-
structed a pair of real-valued one-dimensional symmetric scaling functions with short support, and Donavan, Geron-
imo, Hardin, and Massopust[4] constructed a corresponding pair of real-valued one-dimensional wavelets (DGHM)
with short support. Strang and Strela[5, 6] used matrix methods in the time domain to construct the DGHM wavelets
and also a nonsymmetric pair. Assuming that the scaling functions have sufficiently many vanishing moments, Ashino
and Kametani[7] introduced r-regular multiwavelets in L2(Rn) and proved a general existence theorem, following
Meyer’s general existence theorem (see Meyer[1], Theorem 2 of Section 3.6 and Proposition 4 of Section 3.7). Jia
and Shen[8] investigated multiresolution on the basis of shift-invariant spaces, proved a general existence theorem
and gave examples to illustrate the general theory. Using Lawton’s results[9] on complex-valued filters, Cooklev[10]
and Cooklev et al.[11] obtained one-dimensional perfect-reconstruction filter banks given by a pair of analyzing and
synthesizing orthogonal linear-phase two-channel multiwavelet filters. Plonka[12], Cohen, Daubechies and Plonka[13],
Plonka and Strela[14], Shen[15], Strela[16], and many others, have obtained important results on the existence, reg-
ularity, orthogonality and symmetry of multiwavelets. Definitions and properties of multiwavelets, filters and filter
banks can be found, for instance, in Ashino, Nagase, and Vaillancourt[18] and Zheng[19] and in the monograph by
Keinert[20].

To start with multiwavelet filtering, we need to get scaling coefficients at high resolution. In the case of mul-
tiwavelets constructed by means of d multiscaling functions, there are d input channels for each sample of data,
because frequently used multiwavelets have multiscaling functions with similar support widths. For fast multiwavelet
algorithms, a given data needs to be pre-processed into d inputs to reduce their sizes. In the case of scalar wavelets,
samples of a given function are used as coefficients in the expansion of the function in terms of the scaled and shifted
scaling function, because, at very fine resolution, the scaling function is close to a constant multiple of a translated
delta function. But in the multiwavelet case, simply using nearby samples as the scaling coefficients is a bad choice,
because each of the d scaling functions may not be close to a constant multiple of a translated delta function even
at very high resolution. For these reasons, data samples need to be pre-processed, or prefiltered, to produce rea-
sonable coefficient values of the expansion in terms of the multiscaling functions at the finest scale. The design of
prefilters have been based on interpolation (Xia, Geronimo, Hardin and Suter[21]), quadrature rules (Johnson[22]),
approximation (Hardin and Roach[23]) and orthogonal projection (Vrhel and Aldroubi[24]).

The field of neural networks started some fifty years ago but has found solid application only in the past twenty
years and it is developing rapidly. Neural networks described in Rumelhart and McClelland[26] are composed of
simple elements operating in parallel. These elements are inspired by biological nervous systems. As in nature, the
network function is determined largely by the connections between elements. A neural network described in Demuthl
and Beale[27] can be trained to perform a particular function by properly choosing the values of the connections
(weights) between elements. Commonly, neural networks are adjusted, or trained, so that a particular input leads to
a specific target output. The network is adjusted by comparing the output and the target, until the network output
matches the target. Typically, many such input/target pairs are used, in this supervised learning, to train a network.

Neural networks have been trained to perform complex functions in various fields of application including pattern
recognition, identification, classification, speech, vision and control systems. Today, neural networks have been
trained to solve problems that are difficult for conventional computers or human beings. The supervised training
methods are commonly used, but other networks can be obtained from unsupervised training techniques or from
direct design methods. Unsupervised networks can be used, for instance, to identify groups of data. Certain kinds
of linear networks and Hopfield networks are designed directly. Several kinds of design and learning techniques can
enrich the users’ choices.

Neural networks allow data-adaptive pre-processing designs. Adaptability greatly reduces the computation cost
if we abandon the goal of perfect reconstruction.

In this paper, we propose a variable pre-processing using neural networks which can be adapted to each data.
To obtain an approximate solution to a structural problem for certain types of multiscaling functions we propose
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to use a shifted multiscaling function and call this procedure shifted scaling approximation. Numerical results show
that our pre-processing is efficient when many approximation coefficients are used and compares favorably with the
solution to linear systems by the Matlab \ operator.

2 Multiwavelets

The following standard wavelet and multiwavelet notation will be used.

Notation 1 • Given a function f ∈ L2(R) and integers j ∈ Z and k ∈ Z, we let fjk(x) denote the scaled and
shifted function

fjk(x) = 2j/2f(2jx− k). (1)

• Given a vector-valued function F = [f1, . . . , fd]T ∈ L2(R)d, we let Fjk denote the scaled and shifted vector
functions

Fjk = [f1
jk, . . . , f

d
jk]T , j ∈ Z, k ∈ Z. (2)

• D = {1, . . . , d} for a positive integer d.

• Z+ = {0, 1, 2, . . .} is the set of natural numbers including zero.

• 〈f, g〉 =
∫

R f(x)g(x) dx is the L2(R) inner product of f and g.

Definition 1 A vector-valued function Ψ := [ψ1, . . . , ψd]T ∈ L2(R)d is called a multiwavelet function if the system

{ψδ
jk}δ∈D, j∈Z, k∈Z

forms an orthonormal basis for L2(R). In this case, the functions ψδ
jk are called multiwavelets and the orthonormal

basis {ψδ
jk}δ∈D, j,k∈Z is called an orthonormal multiwavelet basis. The multiwavelet expansion of f ∈ L2(R) with

respect to an orthonormal multiwavelet basis is

f(x) =
∑

δ∈D, j,k∈Z
〈f, ψδ

jk〉ψδ
jk(x). (3)

To construct a multiwavelet function, Ψ, from a multiscaling function, Φ, we generalize to multiwavelets the
notion of multiresolution analysis given in Mallat[25] and Meyer[1] for scalar wavelets.

Definition 2 An increasing sequence of closed subspaces {Vj}j∈Z of L2(R),

· · · ⊂ V−2 ⊂ V−1 ⊂ V0 ⊂ V1 ⊂ V2 ⊂ · · · ,

is called a multiwavelet multiresolution analysis if it satisfies the following four properties:

(a) ∩j∈ZVj = {0} and ∪j∈ZVj is dense in L2(R).

(b) f(x) ∈ Vj if and only if f(2x) ∈ Vj+1.

(c) f(x) ∈ V0 if and only if f(x− k) ∈ V0 for every k ∈ Z.

(d) There exists a multiscaling function Φ := [ϕ1, . . . , ϕd]T ∈ V d
0 such that {ϕδ(x−k)}δ∈D,k∈Z form an orthonormal

basis of V0.

When multiwavelets are constructed from a multiresolution analysis, there exist functions ϕδ, δ ∈ D, called scaling
functions, such that the set of functions

{ϕδ
0,k}δ∈D, k∈Z

⋃
{ψδ

jk}δ∈D, j∈Z+, k∈Z

is an orthonormal basis of L2(R). The multiwavelet expansion of f ∈ L2(R) with respect to this orthonormal basis
is

f(x) =
∑

δ∈D, k∈Z
〈f, ϕδ

0,k〉ϕδ
0,k(x) +

∑
δ∈D, j∈Z+, k∈Z

〈f, ψδ
jk〉ψδ

jk(x). (4)

The coefficients 〈f, ϕδ
0,k〉 and 〈f, ψδ

jk〉 are called multiscaling coefficients and multiwavelet coefficients, respectively.
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Remark 1 In the n-dimensional case, a multiresolution analysis {Vj}j∈Z of L2(Rn) for multiwavelets is defined the
same way as in the one-dimensional case, but there are 2n − 1 multiwavelet functions which can be parameterized by
the set E := {0, 1}n\{(0, . . . , 0)} as

Ψε := [ψ1
ε , . . . , ψ

d
ε ]T ∈ V d

1 , ε ∈ E.

A multiresolution analysis {Vj}j∈Z of L2(Rn) can be constructed from a given one-dimensional multiresolution anal-
ysis by means of the tensor product of multiresolution analysis.

Assume that we have a multiwavelet multiresolution analysis {Vj}j∈Z of L2(R). Using notation (2), we define the
lowpass matrix coefficients

Hk :=
〈
Φ0,0,ΦT

1,k

〉
L2(R)

=
[〈
ϕδ

0,0, ϕ
η
1,k

〉
L2(R)

]
(δ,η)∈D×D

∈ Cd×d,

and the matrix frequency response, or matrix symbol,

M0(ξ) :=
1√
2

∑
k∈Z

Hke
−ikξ ∈ L2([0, 2π])d×d.

Then the dilation equation and its Fourier transform are

Φ(x) = 21/2
∑
k∈Z

HkΦ(2x− k), Φ̂(ξ) = M0(ξ/2)Φ̂(ξ/2),

where Φ̂(ξ) := [ϕ̂1(ξ), . . . , ϕ̂d(ξ)]T ∈ L2(R)d. It is known that if we choose M1(ξ) such that

M(ξ) :=
[
M0(ξ) M0(ξ + π)
M1(ξ) M1(ξ + π)

]
is a unitary matrix for almost all ξ ∈ [0, 2π], then the multiwavelet function Ψ is given by the wavelet dilation equation
or by its Fourier transform,

Ψ(x) = 21/2
∑
k∈Z

GkΦ(2x− k), Ψ̂(ξ) = M1(ξ/2)Φ̂(ξ/2),

where Gk, k ∈ Z, are the Fourier coefficients of M1(ξ), that is,

M1(ξ) =
1√
2

∑
k∈Z

Gke
−ikξ ∈ L2([0, 2π])d×d.

Thus, Gk, k ∈ Z, are given by the scalar products

Gk :=
〈
Ψ0,0,ΦT

1,k

〉
L2(R)

=
[〈
ψδ

0,0, ϕ
η
1,k

〉
L2(R)

]
(δ,η)∈D×D

∈ Cd×d.

3 Approximation using multiscaling functions

Hereafter, we only deal with the real-valued case and assume that the number of multiscaling functions is two, that
is, d = 2.

3.1 The main problem

Our problem is to find the best approximation of f ∈ L2(R) in Vj . As each element sj ∈ Vj is represented as

sj(x) = 2j
∑

k

c1j,kϕ
1(2jx− k) + 2j

∑
k

c2j,kϕ
2(2jx− k), (5)

our problem is to find coefficients c1j,k and c2j,k that minimize the integral∫
R
|f(x)− sj(x)|2 dx. (6)
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When Φ = [ϕ1, ϕ2]T is an orthonormal multiscaling function, the best approximation is given by

c1j,k = 2j

∫
f(x)ϕ1(2jx− k) dx, c2j,k = 2j

∫
f(x)ϕ2(2jx− k) dx, (7)

which can be calculated by numerical integration.
When a given data consists of equally spaced samples, ∆ = xn+1 − xn, integral (6) can be approximated by ∆

times the sum
E(c1j,k, c

2
j,k) =

∑
n

|f(xn)− sj(xn)|2 . (8)

We expect that the least square solution to (8) to be an accurate approximation at the points xn.

3.2 Shifted scaling approximation

For certain types of multiscaling functions, Φ, and sampling points, {xn}, it often happens that a given data f(x)
cannot be approximated well by (5). For example, the multiscaling functions CL2 and CL3, which will be discussed
in section 5, have a structural problem in solving a finite dimensional version of the equation∑

`∈{1,2}, k∈Z

c`j,kϕ
`
j.k(xn) = fj,n, (9)

where fj,n are determined from j and f(xn). More precisely, when the left-hand side of (9) is represented in matrix
form:

A
[
. . . , c1j,k, . . . , c

2
j,k, . . .

]T
, (10)

where the components of A are ϕ`
j.k(xn), a finite dimensional approximation of A is a singular matrix. In such a case,

we propose to use a shifted function sj(x + θ) instead of sj(x), where the shift parameter θ satisfies 0 ≤ θ ≤ ∆/2.
We call this procedure a shifted scaling approximation and its algorithm is as follows.

Algorithm 1 (Shifted scaling approximation) Minimize

Eθ(c1j,k, c
2
j,k) :=

∑
n

|f(xn)− sj(xn + θ)|2 (11)

over θ.

4 Multiwavelet neural networks

Assume that each summation of ϕ1(2jx − k) and ϕ2(2jx − k) in (5) contains L terms and consider a three-layer
neural network with input x and output sj(x) as shown in Figure 1. Then, the back-propagation learning method
gives the least square solution to (8). We call such a neural network a multiwavelet neural network.

c2
j,k

s (x)

c1
j,k

ϕ  (2 x-k)2 jϕ  (2 x-k)1 j
Hidden layer

Output layer

Input layer

1 1

j

x

Figure 1: A three-layer multiwavelet neural network.
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4.1 Training algorithm

The training algorithm for our multiwavelet neural networks consists in the following four steps.

Algorithm 2 (Training algorithm) Let input x be given.

(i) Fix the resolution j and set m = 0, the number of trainings. Let the initial coefficients c`,[m]
j,k , ` = 1, 2, be

properly chosen values. Set the conjugate gradients dc`,[m]
j,k = 0. Calculate the initial square error E[m] =

E
(
c
1,[m]
j,k , c

2,[m]
j,k

)
.

(ii) Choose a constant 0 < λ[m] < 1 and calculate the conjugate gradients as follows:

dc
`,[m+1]
j,k =

∂E
(
c
1,[m]
j,k , c

2,[m]
j,k

)
∂c

`,[m]
j,k

+ λ[m]dc
`,[m]
j,k .

(iii) Choose a constant η[m] > 0 and calculate the new coefficients

c
`,[m+1]
j,k = c

`,[m]
j,k − η[m]dc

`,[m+1]
j,k .

(iv) Calculate the square error
E[m+1] = E

(
c
1,[m+1]
j,k , c

2,[m+1]
j,k

)
.

If E[m+1] is small enough, then the training is good and the algorithm is stopped. Else if the relative error,

E[m] − E[m+1]

E[m]
,

is small, then the algorithm is aborted and we conclude that more training is hopeless and a larger resolution j
is needed for this experiment. Otherwise, set m = m+ 1 and go to (ii).

4.2 Numerical experiments for determined and overdetermined systems

In our numerical experiments, a shifted scaling approximation is applied. In multiwavelet neural networks, the pairs
of input and output {x, sj(x+θ)} are known and the coefficients {c1j,k, c2j,k} are unknown. We deal with the following
two cases.

(i) Determined systems
In this case, the unknown coefficients {c1j,k, c2j,k} are uniquely determined by the known input and output pairs
{x, sj(x+ θ)}. For sampling width ∆ = 1, the resolution must satisfy j = −1.

(ii) Overdetermined systems
In this case, the number of input and output pairs {x, sj(x+ θ)} exceeds the number of unknown coefficients
{c1j,k, c2j,k}. For sampling width ∆ = 1, the resolution must satisfy j ≤ −2.

5 Numerical results

5.1 Multiscaling functions used in our numerical experiments

The following three types of multiscaling functions have been used in our numerical experiments.

(i) DB2 and DB3: The multiscaling functions, with support [0, 2N +1], of Ashino, Nagase, and Vaillancourt[18]
are generated by Daubechies’ compactly supported scalar wavelets with N = 2 and N = 3, respectively.

(ii) CL2 and CL3: The multiscaling functions of Chui and Lian[28] with N = 2 and N = 3, respectively, with
support [0, N ].

(iii) GHM : The multiscaling function of Donavan, Geronimo, Hardin, and Massopust[4]. The supports of the two
components of the multiscaling function are [0, 1] and [0, 2], respectively.
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5.2 Data used in the numerical experiments

Our numerical experiments dealt with determined and overdetermined systems. For these two kinds of systems, we
used the following two groups of data.

(i) The five data shown in Figure 2 and described in subsection 5.2.1 were used when reconstruction is required.

0 2000 4000 6000
100

200

300

400

500

600
leleccum

0 2000 4000 6000
-0. 5

0

0.5
gyo

0 500 1000
-3

-2

-1

0

1

2

3
sin245

woman belmont1

Figure 2: The data used in our numerical experiments when reconstruction is required.

(ii) The two data shown in Figure 3 and described in subsection 5.2.2 were used in the case of lower resolution.

0 200 400 600 800 1000
-1

-0. 5

0

0. 5

1

0 200 400 600 800 1000
-1

-0. 5

0

0. 5

1
sin10 Graph of x  and -x  pasted at 02 2

Figure 3: The data used in the numerical experiments in the case of lower resolution.

Table 1 lists the notation used below.

5.2.1 Results for determined systems

Without loss of generality, we can assume that a given data belongs to V−1 and the number of elements of the data
is 2L. We calculate the coefficients {c1−1,k, c

2
−1,k} with our multiwavelet neural networks and represent a given data

as in Figure 2. We take the shift parameter θ = 2j−1 at resolution j for CL2, CL3 and θ = 0 for the other cases.
Table 2 lists the results for leleccum which involves a real-world signal of electricity consumption measured over

the course of three days. This signal is particularly interesting because noise was introduced when a defect developed
in the monitoring equipment as measurements were made. Wavelet analysis effectively removes the noise.
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Table 1: Notation.
j Resolution

Nc Number of coefficients
En `2 norm of error
Nl Number of learnings
El Error after learning
θ Shift parameter

Table 3 lists the results for the Chinese sound gyo which means “fish”.
Table 4 lists the results for the function sin245:

sin 245(n) = sin
2πn

2× 20
+ sin

2πn
4× 10

+ sin
2πn

5× 20
, n = 1, 2, . . . , 1000.

Table 5 lists the results for the 256× 256 gray-scale image woman with element values in [0, 1] and whose `2 norm
is 153.4.

Table 6 lists the results for the 320 × 240 gray-scale image belmont1 with element values in [0, 1] and whose `2

norm is 176.9.
We have the following observations.

(i) Comparing the quadrature error, En, with the error after learning, El, we see that our neural network pre-
processing is much more accurate than the method of numerical integration.

(ii) Shifted scaling approximations work well for the multiscaling functions CL2 and CL3 as the error after learning,
El, is large with θ = 0 but small with θ = 2−2.

(iii) Our multiwavelet neural network pre-processing saves memory as compared with solving (9).

Table 2: Network training for leleccum in V−1,
with 4320 points and `2 norm = 23410. Results
for CL2 and CL3 are given without and with
shift.

Wavelet Nc En Nl El θ
DB2 4324 330.1 10 0.00057 0
DB3 4328 175.1 10 0.00061 0
CL2 4322 179.7 30 25.324 0

22.0 10 2.56× 10−11 2−2

CL3 4324 181.1 30 22.270 0
21.3 10 7.52× 10−9 2−2

GHM 4322 193.3 10 0.00053 0

Table 3: Network training for gyo in V−1 with
4001 points and `2 norm = 8.78. Results for
CL2 and CL3 are given without and with shift.

Wavelet Nc En Nl El θ
DB2 4004 1.28 10 2.62× 10−6 0
DB3 4008 1.03 10 1.61× 10−6 0
CL2 4002 1.08 30 0.0178 0

0.18 10 2.42× 10−13 2−2

CL3 4004 1.08 30 0.0159 0
0.04 10 1.67× 10−11 2−2

GHM 4002 1.11 10 2.41× 10−6 0

5.2.2 Results for overdetermined systems

We calculate the 2L coefficients {c1j,k, c2j,k} by our multiwavelet neural networks. Assume that a given data belongs
to V−1 and the number of elements of the data is much bigger than 2L. So the resolution must satisfy j ≤ −2.

The numerical experiments for the overdetermined systems were carried out by the following three-step algorithm.
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Table 4: Network training for sin245 in V−1

with 1000 points and `2 norm = 38.7. Results
for CL2 and CL3 are given without and with
shift.

Wavelet Nc En Nl El θ
DB2 1004 2.12 10 1.19× 10−6 0
DB3 1008 2.07 10 6.50× 10−7 0
CL2 1002 2.08 30 0.00327 0

0.34 10 3.08× 10−14 2−2

CL3 1004 2.08 30 0.00171 0
0.04 10 9.12× 10−12 2−2

GHM 1002 2.08 10 1.14× 10−6 0

Table 5: Network training for woman in V−1 with
256×256 points and `2 norm = 153.4. Results for
CL2 and CL3 are given without and with shift.

Wavelet Nc En Nl El θ
DB2 (2× 130)2 55.5 15 0.00153 0
DB3 (2× 132)2 44.9 15 0.00098 0
CL2 (2× 129)2 13.6 30 2.62 0

9.2 5 0.00108 2−2

CL3 (2× 130)2 11.3 30 2.26 0
11.3 6 0.00111 2−2

GHM (2× 129)2 128.8 15 0.00139 0

Algorithm 3 (For overdetermined systems) The three steps are:

(i) Set the initial resolution j = −10.

(ii) Train the multiwavelet neural networks and calculate the error after learning, El.

(iii) If El is smaller than the `2 norm of the original data, then stop and output El. Otherwise, set j = j + 1 and
go to (2).

By Algorithm 3, we can choose the proper resolution j which can approximate the original data with a given
small error.

Table 7 lists the result for the function sin10:

sin 10(n) = sin
10πn
1000

, n = 1, 2, . . . , 1000.

To train the network for sin10, start with resolution j = −10 and approximate the data in Vj and calculate E`. If
E`/(`2 norm of the initial data) ≤ 1/100, then put the resolution and the error in the table; otherwise do the same
thing for next resolution j = j + 1.

Table 8 lists the results for the function

f(x) =
{

x2, x < 0,
−x2, x ≥ 0.

The number of data is 1000 and the algorithm for sin10 is also used here.
We have the following observations.

(i) Tables 7 and 8 show that the appropriate choice of the resolution, j, depends simultaneously on the data and
the type of multiscaling function.

(ii) Comparing the error by numerical integration, En, with the error after learning, El, we find that our pre-
processing is more accurate than the method of numerical integration.
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Table 6: Network training for belmont1 in V−1 with 320×
240 points and `2 norm = 176.9. Results for CL2 and CL3
are without and with shift.

Wavelet Nc En Nl El θ
DB2 (2× 162)× (2× 122) 57.9 15 0.00177 0
DB3 (2× 164)× (2× 124) 46.7 15 0.00109 0
CL2 (2× 161)× (2× 121) 14.3 30 2.89 0

9.7 5 0.00115 2−2

CL3 (2× 162)× (2× 122) 12.2 30 2.51 0
9.7 6 0.00117 2−2

GHM (2× 161)× (2× 121) 146.2 15 0.00159 0

Table 7: Network training for sin10 with
1000 points and `2 norm = 22.4. The error
is ≤ 0.224. The results for CL2 and CL3 are
without and with shift.

Wavelet j Nc En Nl El θ
DB2 −4 130 0.418 10 0.224 0
DB3 −5 72 0.483 10 0.177 0
CL2 −4 128 0.441 10 0.160 0

0.272 10 0.166 2−5

CL3 −5 68 0.504 10 0.127 0
0.358 10 0.127 2−6

GHM −4 128 0.365 10 0.0969 0

6 Comparing solving linear system and neural network

Two methods were used for solving the linear systems of equations for the multiscaling coefficients, namely, the
Matlab left-inverse operator \ and multiwavelet neural networks.

Given a linear system Ax = b, the Matlab left-inverse operator \ is used to obtain the solution x = A\b. Matlab
uses the LU decomposition with partial pivoting by row interchange if the matrix A is square and nonsingular;
otherwise a least square solution is sought by the QR decomposition or the singular value decomposition of A.

For square matrices, the resolution is j = −1 and the Matlab left-inverse operator \ can solve equations more
precisely than neural networks, but it is slower.

In the least square case, with resolution j = −2, the Matlab left-inverse operator \ and neural networks can fit
the coefficients with the same precision, but neural networks are faster. We use leleccum.mat for data fitting.

In Table 9, SE means square error and NNs means neural networks. The first column lists the number of points
in the data size. The third and fifth columns list the cpu time in seconds for the Matlab operator \ and NNs,
respectively.

From our experiments we see, in Table 9, that our pre-processing uses less cpu time than the method of inversion
with the Matlab \ operator.

Computation was done with Matlab version 6.5.1 on a PC running under Windows 2000 with 512MB of RAM.
The CPU is AMD Athlon 1.13GHz.

7 Conclusion

Various numerical experiments lead us to the following conclusion.

(i) In the case of high resolution approximations, the accuracy of our pre-processing greatly surpasses the accuracy
of the method of numerical integration.

(ii) In the case of low resolution approximations, our pre-processing is one-digit more accurate than the method of
numerical integration and it is cheaper than the method of inversion by means of the Matlab \ operator.

(iii) In the case of large data, our neural network pre-processing saves memory as compared with the conjugate
gradient method for the same computational cost.
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Table 8: Network training for the graph of
x2 and −x2 pasted at 0 with 1000 points and
`2 norm = 14.1. The error is ≤ 0.141. The re-
sults for CL2 and CL3 are without and with
shift.

Wavelet j Nc En Nl El θ
DB2 −7 20 0.438 10 0.110 0
DB3 −8 16 0.703 11 0.141 0
CL2 −7 18 0.613 10 0.108 0

0.613 10 0.108 2−8

CL3 −8 12 1.083 12 0.123 0
1.083 11 0.130 2−9

GHM −7 18 0.338 10 0.070 0

Table 9: Cpu time in seconds for Matlab’s \ against neural networks for
leleccum.mat

Size Wavelet j θ cpu for \ SE of \ cpu for NNs SE of NNs
1000 GHM −1 14.7 5.47E-24 9.3 3.94E-04
2000 GHM −1 86.8 8.94E-24 25.6 5.63E-04
3000 GHM −1 260.3 1.44E-23 48.8 4.06E-04

2000 GHM −2 39.7 5.40E+03 22.1 5.40E+03
2000 CL2 −2 39.3 4.98E+03 22.4 4.98E+03
2000 CL3 −2 55.2 4.80E+03 39.3 4.84E+03

3000 GHM −2 106.8 1.73E+04 43.9 1.73E+04
3000 CL2 −2 107.0 1.70E+04 45.7 1.70E+04
3000 CL3 −2 131.3 1.65E+04 71.8 1.65E+04

1000 CL2 −1 0.2 15.8 6.37E-22 9.9 8.32E-08
2000 CL2 −1 0.2 89.7 1.93E-21 28.9 1.59E-07
3000 CL2 −1 0.2 265.4 3.83E-21 54.4 1.43E-07

1000 CL3 −1 0.2 24.8 8.40E-22 18.9 1.18E-10
2000 CL3 −1 0.2 106.7 2.31E-21 46.2 1.84E-10
3000 CL3 −1 0.2 290.0 4.59E-21 80.1 1.19E-10

4000 GHM −2 250.2 2.86E+04 66.0 2.86E+04
4000 CL2 −2 250.3 2.78E+04 69.1 2.78E+04
4000 CL3 −2 284.7 2.73E+04 103.9 2.73E+04

4000 GHM −1 0.2 714.2 1.44E-21 109.0 4.30E-02
4000 GHM −1 0.0 726.1 1.60E-23 86.6 4.19E-04
4000 CL2 −1 0.2 774.8 6.58E-21 94.2 4.56E-08
4000 CL3 −1 0.2 730.1 7.56E-21 128.2 1.41E-10
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